Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The heterodimerization of wild-type (WT) Cu, Zn superoxide dismutase-1 (SOD1) and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Post-translational modifications that accelerate SOD1 heterodimerization remain unidentified. Here, we used capillary electrophoresis to quantify the effect of cysteine-111 oxidation on the rate and free energy of ALS mutant/WT SOD1 heterodimerization. The oxidation of Cys111-β-SH to sulfinic and sulfonic acid (by hydrogen peroxide) increased rates of heterodimerization (with unoxidized protein) by ∼3-fold. Cysteine oxidation drove the equilibrium free energy of SOD1 heterodimerization by up to ΔΔG = −5.11 ± 0.36 kJ mol–1. Molecular dynamics simulations suggested that this enhanced heterodimerization, between oxidized homodimers and unoxidized homodimers, was promoted by electrostatic repulsion between the two “dueling” Cys111-SO2–/SO3–, which point toward one another in the homodimeric state. Together, these results suggest that oxidation of Cys-111 promotes subunit exchange between oxidized homodimers and unoxidized homodimers, regardless of whether they are mutant or WT dimers.more » « less
-
Abstract The degree by which metalloproteins partially regulate net charge (Z) upon electron transfer (ET) was recently measured for the first time using “protein charge ladders” of azurin, cytochrome c, and myoglobin [Angew. Chem. Int. Ed.2018,57(19), 5364–5368;Angew. Chem.2018,130, 5462–5466]. Here, we show that Cu, Zn superoxide dismutase (SOD1) is unique among proteins in its ability to resist changes in net charge upon single ET (e.g., ΔZET(SOD1)=0.05±0.08 per electron, compared to ΔZET(Cyt‐c)=1.19±0.02). This total regulation of net charge by SOD1 is attributed to the protonation of the bridging histidine upon copper reduction, yielding redox centers that are isoelectric at both copper oxidation states. Charge regulation by SOD1 would prevent long range coulombic perturbations to residue pKa’s upon ET at copper, allowing SOD1’s “electrostatic loop” to attract superoxide with equal affinity (at both redox states of copper) during diffusion‐limited reduction and oxidation of superoxide.more » « less
An official website of the United States government
